Forklift Starter and Alternator

Forklift Starter and Alternator - The starter motor these days is usually either a series-parallel wound direct current electric motor that has a starter solenoid, which is similar to a relay mounted on it, or it can be a permanent-magnet composition. As soon as current from the starting battery is applied to the solenoid, basically through a key-operated switch, the solenoid engages a lever which pushes out the drive pinion that is positioned on the driveshaft and meshes the pinion using the starter ring gear that is found on the engine flywheel.

Once the starter motor starts to turn, the solenoid closes the high-current contacts. Once the engine has started, the solenoid has a key operated switch which opens the spring assembly so as to pull the pinion gear away from the ring gear. This particular action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This allows the pinion to transmit drive in only a single direction. Drive is transmitted in this way via the pinion to the flywheel ring gear. The pinion continuous to be engaged, for instance since the driver did not release the key as soon as the engine starts or if the solenoid remains engaged since there is a short. This causes the pinion to spin separately of its driveshaft.

The actions discussed above would prevent the engine from driving the starter. This significant step prevents the starter from spinning so fast that it can fly apart. Unless modifications were done, the sprag clutch arrangement will stop making use of the starter as a generator if it was utilized in the hybrid scheme discussed earlier. Normally a regular starter motor is meant for intermittent utilization which would preclude it being utilized as a generator.

The electrical components are made to be able to work for about 30 seconds to avoid overheating. Overheating is caused by a slow dissipation of heat is because of ohmic losses. The electrical parts are designed to save weight and cost. This is the reason nearly all owner's instruction manuals meant for automobiles recommend the operator to pause for a minimum of 10 seconds after every ten or fifteen seconds of cranking the engine, if trying to start an engine which does not turn over right away.

During the early part of the 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Prior to that time, a Bendix drive was utilized. The Bendix system functions by placing the starter drive pinion on a helically cut driveshaft. When the starter motor starts spinning, the inertia of the drive pinion assembly allows it to ride forward on the helix, hence engaging with the ring gear. Once the engine starts, the backdrive caused from the ring gear enables the pinion to exceed the rotating speed of the starter. At this moment, the drive pinion is forced back down the helical shaft and thus out of mesh with the ring gear.

In the 1930s, an intermediate development between the Bendix drive was made. The overrunning-clutch design which was made and launched during the 1960s was the Bendix Folo-Thru drive. The Folo-Thru drive has a latching mechanism along with a set of flyweights in the body of the drive unit. This was an improvement as the typical Bendix drive used in order to disengage from the ring as soon as the engine fired, even though it did not stay functioning.

As soon as the starter motor is engaged and starts turning, the drive unit is forced forward on the helical shaft by inertia. It then becomes latched into the engaged position. As soon as the drive unit is spun at a speed higher than what is achieved by the starter motor itself, like for example it is backdriven by the running engine, and then the flyweights pull outward in a radial manner. This releases the latch and allows the overdriven drive unit to become spun out of engagement, thus unwanted starter disengagement could be avoided before a successful engine start.